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DISLOCATION STRUCTURE OF SHEAR BANDS IN SINGLE CRYSTALS

UDC 548.24S. P. Kiselev

A mathematical model is proposed for the development of a shear band in crystals. The model is
based on the mechanism of double cross-slips of screw-dislocation segments. Equations are derived
to study instability of the uniform distribution of dislocations. A solution is found in the form of a
traveling wave, which describes the shear-band structure.
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Introduction. Reaching the critical value of the shear stress is known to lead to plastic deformation of
the crystal. Dislocation loops start moving in the shear plane and expanding, which results in emergence of shear
bands [1]. As the strain increases, the shear bands can become packed into bunches, forming Lüders–Chernov slip
bands at the macroscopic level [2]. Thus, slip bands play an important role in plastic deformation and are intensely
studied both theoretically and experimentally.

Experimental data on shear bands in ionic LiF crystals with a face-centered cubic lattice can be found in
[3]. The LiF crystal was chosen because plastic deformation at the initial stage in this crystal proceeds in one slip
plane aligned at an angle of 45◦ to the extension (compression) axis. Expansion of the shear band is found to occur
owing to double cross-slips of screw-dislocation segments. Crystal deformation occurs only at the shear-band front.
Because of the action of internal stresses due to clustering of dislocations, their velocity behind the band front tends
to zero, and the plastic strain inside the band remains constant. Mathematical models that describe shear-band
expansion owing to the mechanism of double cross-slips were constructed in [4–6]. Under the assumption that the
double cross-slips have a stochastic character, diffuse equations of the type of the Kolmogorov–Petrovskii–Piskunov–
Fisher equation for dislocation density were derived in [4–6], and the solutions of these equations were examined.
Implementation of the approach proposed in [4–6], however, has significant drawbacks: equations derived in [4]
contain negative diffusion coefficients, which contradicts the second law of thermodynamics. The assumption on a
constant velocity of dislocations made in [5, 6] contradicts experimental data on deceleration of dislocations inside
the shear band [3]. The mathematical model of shear-band propagation constructed in the present work is devoid
of the above-mentioned drawbacks; solutions that describe the structure of the shear band considered in [3] are
obtained.

1. Derivation of Equations. We consider a planar sample extended along the x1 axis under the action
of stress σ1. We assume that the motion of dislocations occurs in a slip plane inclined to the x1 axis by an angle ψ
(Fig. 1). Plastic deformation occurs owing to the motion of dislocation loops until their deceleration on obstacles of
different origin (admixtures, effusion, etc.). Under the action of local stresses, the screw segment of the decelerated
dislocation loop can be ejected into the neighboring slip plane to give rise to a Frank–Reed source, which generates
dislocation loops moving in a parallel slip plane. In turn, the dislocation loop in the initial slip plane can turn
around the obstacle and continue its motion. The time and distance of ejection of the screw segment have a random
character, and the process of multiplication of dislocations has to be described by an integrodifferential kinetic
balance equation (see [4]). It should be noted that, if the ejection distance is h < h0, this segment does not move
because of elastic interaction of the ejected segment with the dislocation in the initial plane, and two dislocation
dipoles arise owing to ejection [3]. If h > h0, the dislocation segment is expanded in the neighboring plane. As the
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Fig. 1. Development of slip bands in a planar sample under uniaxial tension along the x1 axis
(dislocations move along the x axis, and slip bands expand in the y direction).

segment ends are fixed, the segment is a Frank–Reed source of dislocation loops whose motion leads to new acts of
double cross-slips. The critical distance of segment ejection is determined by the formula [3]

h0 = µb/(8π(1 − ν)(σ − σf )), (1.1)

where µ is the shear modulus, ν is Poisson’s ratio, b is the absolute value of the Burgers vector, σ is the shear
stress, and σf is the dry friction stress. The number of negative dislocations is assumed to be equal to the number
of positive dislocations; hence, Eq. (1.11) contains no far-range stresses described in [7].

Taking into account these comments, we write the integrodifferential equation for dislocation density [4]:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
=

∞∫
x

Q(x′ − x)R(y) dx′ + f ′, Q(x′ − x) =
1
λs

exp
(
− |x′ − x|

λs

)
,

∂ρi

∂t
=

∞∫
x

dx′Q(x′ − x)

y+h0∫
y−h0

ρ′u′

λ′s
P (y′ − y) dy′ + ϕ′, P (y′ − y) =

1
hc

exp
(
− |y′ − y|

hc

)
, (1.2)

R(y) =

y−h0∫
−∞

qFR
ρ′u′

λ′s
P (y′ − y) dy′ +

∞∫
y+h0

qFR
ρ′u′

λ′s
P (y′ − y) dy′.

Here u′ = u(ρ′), λ′s = λs(ρ′), ρ′ = ρ(x′, y′), u and v are the components of velocity of dislocations in the x and y

directions, respectively (see Fig. 1), ρ and ρi are the densities of moving and motionless dislocations, respectively,
qFR is the number of dislocation loops arising in the neighboring slip plane owing to the Frank–Reed mechanism,
Q(x′ − x) is the probability that the screw segment of the dislocation loop runs the distance x′ − x after double
cross-slips, P (y′ − y) is the probability of ejection of the screw segment to the distance y′ − y, λs and hc are the
characteristic length of travel and ejection of the screw segment, f ′ and ϕ′ are the terms that describe multiplication
of moving and motionless dislocations, which are determined by the formulas [4]

f ′ = un− (λ−1
is + hiρi)uρ+ δfρfuρ− hauρ

2, ϕ′ = −hdρiuρ, (1.3)

λis is the distance covered by the screw segments of the dislocation loop before they stop on obstacles of the non-
deformation nature, n is the concentration of the Frank–Reed sources, hi is the size of dislocation dipoles decelerating
moving dislocations, ha is the distance at which annihilation of dislocations of the opposite sign occurs, hd is the size
of dislocation dipoles destroyed by moving dislocations, and δf ≈ 10−2 is a constant. The first term in the right side
of the first equation in (1.3) describes multiplication of moving dislocations by the Frank–Reed sources, the second
term describes termination of dislocation motion on obstacles and dipoles, the third term describes multiplication
of moving dislocations on forest dislocations ρf , and the fourth term describes annihilation of dislocations. In
the second equation of (1.3), the term in the right side describes the destruction of dislocation dipoles by moving
dislocations. If the dislocation motion has a thermally activated character, the dislocation velocity in the slip plane
is approximated by the formula [3]
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u = u0

(σ − σf − σµ

σ0

)m

, σµ = αµb
√
ρ, (1.4)

where α, u0, and σ0 are empirical constants, m = H0/(kT ), H0 is the characteristic activation energy, k is the
Boltzmann constant, T is the temperature, and σµ is the stress caused by interaction of this dislocation with the
closest neighborhood (stress of the third kind). At room temperature, the value for LiF is m ≈ 7 [3]. The plastic
shear strain rate ε̇ is found by the Orowan–Taylor formula

ε̇ = bρu. (1.5)

It follows from Eqs. (1.4) and (1.5) that plastic deformation begins if the inequality σ > σ∗ is satisfied
(σ∗ = σf +σµ is the critical shear stress). The dislocation velocity v in the direction perpendicular to the slip plane
is determined by diffusion of point defects and vacancies to the dislocation [1]. There processes are not considered
in the present work; hence, we assume that v = 0.

We assume that the main contribution to integration in Eqs. (1.2) is made by points x′, y′ close to x, y.
Then we can assume that u′ ≈ u(ρ), λ′s ≈ λs(ρ), and ρ = ρ(x, y) in Eq. (1.2), and the dislocation density can be
presented as

ρ′ ≈ ρ+
∂ρ

∂x
(x′ − x) +

∂ρ

∂y
(y′ − y) +

1
2
∂2ρ

∂x2
(x′ − x)2 +

1
2
∂2ρ

∂y2
(y′ − y)2 +

∂2ρ

∂x ∂y
(x′ − x)(y′ − y).

After calculating the integrals, we obtain the following system:

∂ρ

∂t
+
∂ρu

∂x
= Dx

∂2ρ

∂x2
+Dy

∂2ρ

∂y2
+ f,

∂ρi

∂t
= ϕ,

Dx = qFRuλs exp (−1/q), Dy = qFRuh
2
0χ(q)/(2λs),

χ(q) = (1 + 2q + 2q2) exp (−1/q), q = hc/h0,

f = ρuhi(ρ0
i − ρi + n/(hiρ) + a

√
ρf − cρ), ϕ = ρuhd(ρ∗i − ρi), (1.6)

ρ∗i =
1

hdλie
, ρ0

i =
1

λqhi
, a =

δf
hi
, c =

ha

hi
,

1
λq

=
1
λm

− 1
λis

,

1
λm

=
qFR

λs
exp

(
− 1
q

)
,

1
λie

=
1
λs

(
1 − exp

(
− 1
q

))
.

Diffusion terms in the second equation of (1.6) are canceled, because the inequalities Di
x/Dx � 1 and Di

y/Dy � 1
are valid.

Equations (1.6) differ from the corresponding equations in [4] by the absence of the factor 1−M in diffusion
coefficients, where M = −(ρ/u) ∂u/∂ρ. As M � 1 in most situations [4], the diffusion coefficients in [4] are negative,
which contradicts the second law of thermodynamics and makes the well-posed formulation of the Cauchy problem
impossible [8].

Let us find why the factor 1 −M appears in the corresponding equations of [4]. As was noted above, in
calculating the integral in (1.2), the dislocation velocity was chosen at the mid-point u′ ≈ u(ρ). To improve this
approximation, Malygin [4] used the expansion into the series

u′ ≈ u+
∂u

∂ρ
∆ρ+ . . . = u

(
1 −M

∆ρ
ρ

)
+ . . . , (1.7)

where ∆ρ = ρ(x′, y′) − ρ(x, y); the dots indicate the terms of a higher order of smallness O(∂2u/∂ρ2(∆ρ)2).
We demonstrate that series (1.7) under given conditions is expanding. Differentiating formula (1.4), we obtain
∂u/∂ρ = −umσµ/(2ρ(σ − σ∗)). Then, the condition of convergence of series (1.7) — M(∆ρ/ρ) < 1 — is written
as mσµ/(2(σ − σ∗))|∆ρ/ρ| < 1, and the residual term has the order O(m(m − 1)(σµ/(σ − σ∗)|∆ρ/ρ|)2/2) < 1. It
follows from these inequalities that the series converges if the following inequality is satisfied:∣∣∣∆ρ

ρ

∣∣∣ < 2
m

σ − σ∗
σµ

. (1.8)
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Fig. 2. Graphical solution of Eq. (2.1): curves 1 and 2 are described by the first and second equations
in (2.1), respectively.

The main contribution to integral (1.2) is made by the distances y′−y � h0 � µb/(σ−σf); therefore, taking
into account the symmetry of the integral kernel in (1.2), we obtain the estimate∣∣∣∆ρ

ρ

∣∣∣ � 1
2ρ

∂2ρ

∂y2
(y′ − y)2 � 1

2ρ
∂2ρ

∂y2

µ2b2

(σ − σf )2
.

It follows from here that, for stresses tending to the shear stress (σ ∼ σ∗ = σf + σµ), the right side in (1.8) tends to
zero, the left side remains finite (σ − σf = σµ > 0), and inequality (1.8) becomes invalid. In this case, series (1.7)
diverges and cannot be used to calculate the integral in (1.2).

2. Analysis of Stability of the Steady Uniform Distribution of Dislocations. We find the steady
uniform solution of (1.6) from the first two equations of system (1.6). Assuming that the derivatives with respect
to time and coordinates in these equations are equal to zero and that ρf ≈ ρ for the density of forest dislocations,
we reduce Eqs. (1.6) to two algebraic equations

ρ(ρ0
i − ρi) + n/hi + aρ3/2 − cρ2 = 0, ρi = ρ∗i . (2.1)

The roots of these equations ρ1, ρ2, and ρ3 (Fig. 2) are found from the condition of intersection of curve 1 described
by the first equation in (2.1) and curve 2 corresponding to the second equation in (2.1). The approximate values of
the roots of system (2.1) are obtained by the formulas

ρ1 ≈ n

hi∆ρi
, ρ2 ≈

(∆ρi

a

)2

, ρ3 ≈
(a
c

)2

, ∆ρi = ρ∗i − ρ0
i > 0. (2.2)

Let roots (2.2) satisfy the inequalities

ρ1 � ρ2 � ρ3. (2.3)

Then these roots are located far enough from the extreme points of curve 1 (see Fig. 2) and can be used in studying
stability of the solutions of Eqs. (1.6). Inequalities (2.3) and the conditions of positiveness of the roots impose
certain restrictions on the parameters in (1.6):

∆ρi > 0,
na2

hi∆ρ3
� 1,

∆ρic

a2
� 1. (2.4)

If inequalities (2.4) are satisfied, system (1.6) is structurally stable [9]. If the disturbances depend only on
the variables t and x, the first two equations in (1.6) are written in the form

∂ρ

∂t
= Dy

∂2ρ

∂y2
+ f,

dρi

dt
= ϕ (2.5)

[the functions f , ϕ, and Dy are defined in (1.6)].
Introducing small deviations of dislocations from one of the roots (2.3) ρ′ = ρ−ρk or ρ′i = ρi−ρ∗i (k = 1, 2, 3)

as variables into Eqs. (2.5), we linearize Eqs. (2.5) in the neighborhood of ρk:
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∂ρ′

∂t
= a11ρ

′ + a12ρ
′
i +Dy

∂2ρ′

∂y2
,

∂ρ′i
∂t

= a21ρ
′ + a22ρ

′
i, a22 = −uhdρk,

a11 = uhi(ρ0
i − ρ∗i + (3/2)aρ1/2

k − 2cρk), a12 = −uhiρk, a21 = 0.
(2.6)

Substituting the solution in the form ρ′ = δρ exp (pt+iky), ρ′i = δρi exp (pt+iky) into (2.6), we obtain the dispersion
equation (p +Dyk

2 − a11)(p − a22) = 0, which has the roots p1 = a11 −Dyk
2 and p2 = a22. As a22 < 0, the root

p2 < 0 corresponds to the stable solution ρ′i ∼ exp (−|p2|t). Using inequalities (2.4), we find the value of the root
p1 at singular points (2.2):

p1 ≈ −(uhi∆ρi +Dyk
2) for ρ = ρ1,

p1 ≈ 1
2
uhi∆ρi

(
1 − 4

c∆ρi

a2

)
−Dyk

2 for ρ = ρ2,

p1 ≈ −
(
uhi

a2

2c
+Dyk

2
)

for ρ = ρ3.

If diffusion is absent (Dy = 0), we have p1 < 0 for ρ = ρ1 or ρ = ρ3 and p1 > 0 for ρ = ρ2; hence, the singular
points (ρ1, ρ

∗
i ) and (ρ3, ρ

∗
i ) are stable nodes, and the point (ρ2, ρ

∗
i ) is a saddle (see Fig. 2). Small perturbations

in the neighborhood of the point (ρ2, ρ
∗
i ) increase exponentially: ρ′ ∼ exp (p1t). If diffusion is taken into account,

increasing perturbations have the wave vectors k <
√
uhi∆ρi(1 − 4c∆ρi/a2)/(2Dy) and the wavelength

λ > λmin, λmin = h0

√
2
3
qFRλmχ(q)
λs(βi − 1)

, βi =
hiλm

hdλie
+
λm

λis
. (2.7)

[In (2.7), we use the formula ∆ρi = (βi − 1)/(hiλm) > 0.] Let us estimate λmin for a LiF crystal loaded by the
shear stress σ = 5 MPa. Assuming in (2.7) that βi = 2, qFR = 1, q = 1/2, ν = 0.25, σf = 1 MPa, b = 0.3 nm, and
µ = 4.3 · 104 MPa, we obtain λmin ≈ h0 ≈ 170 nm. Our analysis shows that the steady uniform state (ρ2, ρ

∗
i ) is

unstable to small perturbations, whereas two other states are stable.
We consider a constant-section sample (see Fig. 1) extended along its axis, so that the shear stress σ acts in

the slip plane. If the inequality σ > σf +σµ is satisfied, the sources of dislocations in some slip planes are activated.
Using the above-formulated mathematical model (1.6), we study the development of plastic deformation in the LiF
single crystal. We assume that the loaded single crystal is in the stable state (ρ1, ρ

∗
i ), and the Frank–Reed source

emits a finite number of dislocations N in a certain slip plane. We consider the problem of evolution of this finite
disturbance.

Introducing the variables

ỹ = y
√
ρ3, t̃ =

t

T
, T =

1
uwhaρ3

, ρ̃ =
ρ

ρ3
, ρ̃i =

ρi

ρ3
, ρ23 =

ρ2

ρ3
,

ũ =
u

uw
=

( 1 − σf/σ −√
ρ̃ σd/σ

1 − σf/σ −√
ρ̃w σd/σ

)m

,

we write Eqs. (2.5) in dimensionless form

∂ρ̃

∂t̃
= D̃

∂2ρ̃

∂ỹ2
+ f̃ ,

∂ρ̃i

∂t̃
= ϕ̃,

D̃ =
qFRũh

2
0

2λsha
χ(q), f̃ = −ũρ̃(

√
ρ̃−√

ρ23 )(
√
ρ̃− 1), (2.8)

ϕ̃ = ρ̃ũ
hd

ha
(ρ̃∗i − ρ̃i), ˙̃ε =

b̃ρ̃ũ

ha
√
ρ3
, ε =

t̃∫
0

˙̃ε dt̃,

where ρw is the characteristic density of moving dislocations and uw and σd are the characteristic velocities and
stresses determined by the formulas

σd = σµ(ρ3), uw = u0((σ − σf − σµ(ρw))/σ0)m. (2.9)
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Fig. 3. Results of the numerical solution of Eqs. (1.4) and (2.8) for σ = 2.3 MPa at different times:
(a) dislocation density; (b) plastic strain rate; (c) plastic strain; (d) dislocation velocity; ρ̃0 is the
initial perturbation of dislocation density.

Sample deformation involves turning of the main axes of the stress tensor by an angle δψ = ε with respect to the
slip plane of dislocations (see Fig. 1). This alters the shear stress in the slip plane; therefore, the stress σ in the
formulas (1.4) and (2.9) for the dislocation velocity has to be replaced by σ′ = σ sin (π/2 + 2ε). This correction
is important because Eq. (1.4) predicts that the dislocation velocity is a rapidly changing function of the shear
stress σ.

The solution of system (2.8) is sought in the domain 0 < ỹ < L̃, t > 0. As the initial conditions, we use the
stable state ρ̃ = ρ̃1 and ρ̃i = ρ̃∗i for 0 < ỹ < L̃1 and L̃1 + ∆H < ỹ < L̃ and the perturbed state ρ̃ = ρ̃1 + ∆ρ̃ on
the segment L̃1 < ỹ < L̃1 + ∆H̃ . The domain boundaries ỹ = 0 and ỹ = L̃ are subjected to the conditions ρ̃ = ρ̃1

and ρ̃i = ρ̃∗i . Equations (2.8) were solved numerically by a second-order explicit scheme, which is described, e.g.,
in [10]. The numerical calculations were performed with the use of the following parameters: ρ̃1 = 0, ρ̃2 = 0.01,
ρ̃3 = 1, ∆ρ̃ = 0.02, ρ̃w = 10−3, ∆H̃ = 4, L̃1 = 1750, L̃ = 3200, and σ = 2.3 MPa. The parameters used for the
LiF single crystal were µ = 4.3 · 104 MPa, ν = 0.35, b = 3 · 10−10 m, λs = 1.3 · 10−3 m, ha = 5 · 10−9 m, m = 8,
χ(q) = 1, σf = 1.3 MPa, σ0 = 5 MPa, α = 0.3, u0 = 2 · 103 m/sec, and qFR = 2.
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Fig. 4. Results of the numerical solution of Eqs. (1.4) and (2.8) for σ = 2.5 MPa at different times:
(a) dislocation density; (b) plastic strain .

The dislocation density, strain rate, plastic strain, and dislocation velocity calculated for several time instants
as functions of the coordinate y are plotted in Fig. 3a–d, respectively. During the time ∆t̃ = 6.7 ·103 (T = 0.22 sec),
the initial perturbation increases to ρ̃ = 0.65 and generates waves propagating to the left and to the right from
the source of perturbations. The wave parameters first change with time, then the process becomes stabilized, and
each wave propagates with a constant velocity. The deformation occurs in the wave front (Fig. 3b), and the strain
is almost constant behind the front (Fig. 3c). The reason is a rapid deceleration of dislocations behind the wave
front owing to internal stresses σµ (1.4), and the dislocation velocity vanishes (Fig. 3d). The region between the
fronts of two waves propagating in the opposite directions can be interpreted as a shear band expanding with a
constant velocity. The solution obtained is in qualitative agreement with the experimental data [3] according to
which the entire deformation occurs in the band front. (For a quantitative comparison, one has to calculate the
stress-strain state of the sample, which varies significantly in the course of deformation.) If the amplitude of the
initial perturbation does not cross the unstable point ∆ρ̃ < ρ̃2, this perturbation decays, and no waves are observed.

For high values of stress σ = 2.5 MPa, the calculations also predict the existence of two abrupt fronts, which
propagate with a constant velocity in the opposite directions at high times (Fig. 4). In this case, however, the
strain rate differs from zero not only in the wave front but also in the entire perturbed region. The strain increases
linearly in the direction from the wave front to the band center (Fig. 4b). This solution can be interpreted as strain
localization, which occurs owing to an increase in stress in the region of evolution of the shear band.

3. Solution of the Traveling-Wave Type. We construct the solution of Eqs. (2.5) in the class of traveling
waves. If the density of motionless dislocations is constant (∂ρi/∂t = 0) and the concentration of the Frank–Reed
sources is low (n → 0), Eq. (2.5) yields the following equation of the type of the Kolmogorov–Petrovskii–Piskunov–
Fisher equation:

∂ρ

∂t
= Dy

d2ρ

dy2
+ f, f = uhi(aρ3/2 − ∆ρiρ− cρ2), ρi = ρ∗i (3.1)

[the dislocation velocity u = u(ρ) is defined in Eq. (1.4)]. This equation is known to have a solution in the form
of a switching traveling wave, which converts one steady solution to another [9]. Choosing the solutions ρ1 and ρ3

from (2.2) as steady solution, we seek for the solution of (3.1) in the form

ρ = ρ(ζ), ζ = y − Ut, (3.2)

which satisfies the boundary conditions

ρ = ρ1 = 0 as ζ → ∞, ρ = ρ3 as ζ → −∞. (3.3)
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Substituting (3.2) into the first equation in (3.1), we obtain

Dy
d2ρ

dζ2
+ U

dρ

dζ
+ f = 0. (3.4)

Karlov and Kirichenko [9] described the solution of Eq. (3.4) with a constant diffusion coefficient Dy = const and
a function f = ψ(ρ) = βρ+ ερ2 − ρ3. As the argument changes, the character of the dependence ψ(ρ) is similar to
the character of the dependence of the function f(ρ) in (3.1); therefore, the corresponding solutions are similar.

We present Eq. (3.4) as a system of two first-order equations

dρ

dζ
= w,

dw

dζ
= −f + Uw

Dy
. (3.5)

From the algebraic equations f+Uw = 0 and w = 0, we find the singular points ρ1, ρ2, and ρ3 of system (3.5), where
ρ1 = 0, and the values of ρ2 and ρ3 are defined by formulas (2.2). Expanding the function f(ρ) into a series in the
neighborhood of the singular points ρk and presenting the solution of system (3.5) in the form ρ− ρk = a1 exp (λζ),
w = a2 exp (λζ), we find the eigenvalues

λ1,2 = −g2/2 ±
√
g2
2/4 + g1, g1 = ω(ρk)/Dy(ρk), g2 = U/Dy(ρk) (k = 1, 3)

at the points ρ1 and ρ3, and

λ1,2 = −g2/2 ±
√
g2
2/4 − g1 [g1 = ω(ρ2)/Dy(ρ2), g2 = U/Dy(ρ2)]

at the point ρ2. Here ω(ρ1) = u(ρ1)hic
√
ρ2ρ3 > 0, ω(ρ2) = (1/2)u(ρ2)hic

√
ρ2 (

√
ρ3 − √

ρ2) > 0, and ω(ρ3) =
(1/2)u(ρ3)hic

√
ρ3 (

√
ρ3 −√

ρ2) > 0. It follows from here that the eigenvalues at the points ρ1 and ρ3 have different
signs (λ1 < 0 and λ2 > 0 for U > 0); therefore, the points ρ1 and ρ3 are saddles. The character of the singular
point ρ2 depends on the wave velocity U : it is a node for g2

2 > 4g1 and a focus for g2
2 < 4g1. If the point ρ2 is a

node, it is impossible to pass from the point ρ1 to the point ρ3; if the point ρ2 is a focus, there exists a unique
value of the velocity U that allows a continuous path from the point ρ1 to the point ρ3 along the separatrix. The
choice of the sign of U is determined from the condition that the system passes to a state with the least “potential

energy” −V (ρ) = −
∫
f(ρ) dρ [9], which, in our case, is equal to

−V (ρ) = uhiρ(∆ρ̄iρ− āρ3/2 + c̄ρ2), ∆ρ̄i = ∆ρi/2, ā = 2a/5, c̄ = c/3.

As we have (ρ1 = 0) −V (ρ1) = 0 in the first stable steady state and (ρ3 = (a/c)2) −V (ρ3) = −(4/15)uhia(a/c)5 < 0
in the second stable steady state, the transition from the state ρ1 to the state ρ3 occurs in the switching wave, and
the wave propagates to the left (U > 0). In this case, in contrast to [9], it is impossible to construct the exact
solution of Eq. (3.4). At high stresses (σ � σf + σµ), however, where the dependence of the dislocation velocity on
the dislocation density can be neglected, such a solution does exist. Introducing the dimensionless coordinates

ζ̃ = ζ
√
ρ3, ρ̃ = ρ/ρ3, Ũ = U/(uha

√
ρ3)

and assuming that u = const, we write Eq. (3.4) in the form

Ã
d2ρ̃

dζ̃2
+ Ũ

dρ̃

dζ̃
+ f = 0, f = −ρ̃

(√
ρ̃−

√
ρ2

ρ3

)
(
√
ρ̃− 1), Ã =

Dy

uha
, (3.6)

where ρ2 and ρ3 are the roots of the equation f = ρ(a
√
ρ− ∆ρi − cρ) = 0:

ρ2,3 = (a/(2c) ∓
√
G)2, G = (a/(2c))2 − ∆ρi/c.

Writing the boundary conditions (3.3) in the dimensionless variables

ρ̃→ 0 at ζ̃ → ∞, ρ̃→ 1 at ζ̃ → −∞,

we obtain the solution of Eq. (3.6) in the form

ρ̃ = 1/(1 + exp (ζ̃/δ))2, Ũ =
√

6Ã (
√
G/ρ3 − 1/6), δ =

√
6Ã. (3.7)

Figure 5 shows the results of the numerical solution of the ordinary differential equations (3.5) and (3.6)
in the phase plane w = dρ̃/dζ̃, ρ̃ for A = 1, ρ̃2/ρ̃3 = 0.2, and different values of the wave velocity U (the tilde
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Fig. 5. Integral curves of system (3.5) in the phase plane w = dρ̃/dζ̃, ρ̃ for U = 0.1 (a), 0.262 (b),
0.4 (c), and 0.8 (d); the dashed curve is the exact solution of Eq. (3.7).

above the dimensionless quantities is omitted in Fig. 5). The dashed curve shows the exact solution of Eq. (3.7)
w = −2ρ̃(1 − √

ρ̃ )/
√

6Ã in the phase plane w, ρ. The calculated behavior of integral curves for different values
of the wave velocity U is consistent with the results of the above-performed qualitative analysis of the solution of
system (3.5). For U = 0.1 and 0.4, the singular point ρ̃2 = 0.2 is a focus capturing integral curves emanating from
the point ρ̃1 = 0 (Fig. 5a) or from the point ρ̃3 = 1 (Fig. 5c). For U = 0.8, the point ρ̃2 = 0.2 is a stable node
simultaneously capturing two integral curves emanating from the points ρ̃1 = 0 and ρ̃3 = 1 (Fig. 5d). It is only the
value U = 0.262 that ensures the existence of a continuous integral curve (separatrix) connecting the initial state
(ρ̃1 = 0) and final state (ρ̃3 = 1) (see Fig. 5b). This value U = 0.262 equals the velocity of the traveling wave.

In the general case of a variable dislocation velocity, a solution of the traveling-wave type can be obtained
by solving system (2.8), (1.4) numerically in the domain 0 < ζ̃ < 1 with appropriate boundary conditions. The
solution obtained in calculations is similar to the solutions plotted in Figs. 3 and 4, where the point of the maximum
dislocation density has to be shifted to the origin, and only one wave traveling either to the right or to the left has
to be considered. In contrast to the exact solution of Eq. (3.7), the maximum dislocation density in the numerical
solution plotted in Fig. 3a is smaller than unity. The reason is the dependence of the dislocation velocity on
density (1.4), which implies that the dislocation velocity equals zero for the density ρ4 = ((σ − σf )/(αµb))2. In
this case, the right sides of Eqs. (2.5) and (2.8) vanish, which yields another steady solution in addition to (2.2):
∂ρ/∂t = ∂ρi/∂t = 0, where ρ = ρ4. [As the first equation in Eqs. (2.5) and (2.8) was divided by the second
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equation, the velocity was canceled out, and this solution was lost in obtaining the steady solutions of (2.2).] If the
inequality ρ̃4 < 1 holds, the solution shown in Fig. 3 with the maximum dislocation density ρ̃max = ρ̃4 (ρ̃4 = ρ4/ρ3)
is obtained. Otherwise (ρ̃4 > 1), the solution plotted in Fig. 4 with the maximum dislocation density ρ̃max = 1 is
obtained.

Conclusions. A mathematical model of the development of plastic deformation owing to the mechanism of
double cross-slips is proposed. A solution of the traveling-wave type is constructed, and its structure is considered.
The stability of the uniform state of the single crystal is examined. It is shown that the perturbation entering an
unstable region increases, and two shear bands propagate in the opposite directions, each of them being described
by a solution of the traveling-wave type. Two types of solutions depending on the magnitude of the applied stress
are possible. For low stresses, plastic deformation occurs in the shear-band front, and the strain remains constant
behind the wave front. At high stresses, the strain rate behind the wave front differs from zero, and the strain
linearly increases with distance from the wave front. The calculated results are in qualitative agreement with
experimental data.

This work was partly supported by the Russian Foundation for Basic Research (Grant No. 04-01-00894a).
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Cu-based alloy single crystals,” Phys. Mesomech. 1, No. 2 (1998).
3. B. I. Smirnov, Dislocation Structure and Hardening of Crystals [in Russian], Nauka, Leningrad (1981).
4. G. A. Malygin, “Self-organization of dislocations and plasticity of crystals,” Usp. Fiz. Nauk, 169, No. 9, 979–

1010 (1999).
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